Exercise 224

The depth (in feet) of water at a dock changes with the rise and fall of tides. It is modeled by the function $D(t)=5 \sin \left(\frac{\pi}{6} t-\frac{7 \pi}{6}\right)+8$, where t is the number of hours after midnight. Determine the first time after midnight when the depth is 11.75 ft .

Solution

Set $D(t)=11.75$ and solve the equation for t.

$$
\begin{aligned}
11.75 & =5 \sin \left(\frac{\pi}{6} t-\frac{7 \pi}{6}\right)+8 \\
3.75 & =5 \sin \left(\frac{\pi}{6} t-\frac{7 \pi}{6}\right) \\
\frac{3.75}{5} & =\sin \left(\frac{\pi}{6} t-\frac{7 \pi}{6}\right)
\end{aligned}
$$

There are two angles, α and θ, that give 3.75/5 after taking the sine. Taking the arcsine of 3.75/5 on the calculator gives θ. α is $\pi-\theta$.

$$
\begin{aligned}
\alpha=\pi-\sin ^{-1}\left(\frac{3.75}{5}\right)=\frac{\pi}{6} t-\frac{7 \pi}{6} & \text { or } & \theta=\sin ^{-1}\left(\frac{3.75}{5}\right)=\frac{\pi}{6} t-\frac{7 \pi}{6} \\
\frac{7 \pi}{6}+\pi-\sin ^{-1}\left(\frac{3.75}{5}\right)=\frac{\pi}{6} t & \text { or } & \sin ^{-1}\left(\frac{3.75}{5}\right)+\frac{7 \pi}{6}=\frac{\pi}{6} t \\
\frac{6}{\pi}\left[\frac{7 \pi}{6}+\pi-\sin ^{-1}\left(\frac{3.75}{5}\right)\right]=t & \text { or } & \frac{6}{\pi}\left[\sin ^{-1}\left(\frac{3.75}{5}\right)+\frac{7 \pi}{6}\right]=t \\
11.38 \approx t & \text { or } & 8.62 \approx t
\end{aligned}
$$

The first time after midnight that the depth is 11.75 ft is 8 hours and $0.62(60) \approx 37.2$ minutes.

